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Fast relaxation mode in a thermotropic uniaxial nematic liquid crystal
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Results are reported from a light scattering measurement in the uniaxial nematic phase in the thermo-
tropic liquid crystal octylcyanobiphenyl, a material which does not exhibit a biaxial phase. In addition
to a slow Goldstone mode associated with twist fluctuations, a fast mode whose relaxation time is in-
dependent of both wave vector and temperature has been observed. The possible origins of this relaxa-

tion are discussed.

PACS number(s): 61.30.Eb

The study of nematic biaxiality has been arduous and
often confusing. In 1980 Yu and Saupe discovered an
unambiguous biaxial nematic phase in the ternary lyo-
tropic liquid crystal composed of potassium laurate, wa-
ter, and 1-decano [1]. Above the uniaxial-biaxial nematic
phase transition temperature T,,, Lacerda Santos,
Galerne, and Durand [2] used quasielastic light scattering
to observe biaxial nematic fluctuations in the uniaxial
phase. They showed that the fluctuations may be de-
scribed by a Landau—de Gennes mean-field model [3,4]
with both amplitude and relaxation time diverging at
T,,. Despite demonstrations of biaxiality in a lyotropic
system, the situation with thermotropic liquid crystals is
considerably murkier. Over the years there has been an
ongoing search for a thermotropic biaxial nematic phase.
Although numerous claims of biaxiality have appeared in
the literature, [5—13], nearly all reports of this phase
have been called into question [14]. Theoretical analysis
has also shown that it is challenging to design a com-
pound with sufficiently large biaxiality to form a biaxial
nematic phase [15-17]. In this light a measurement of
the biaxial susceptibility in the thermotropic uniaxial
nematic phase would serve as an excellent probe of the
existence and location of an incipient thermotropic biaxi-
al nematic phase. In this paper we report on results of a
light scattering experiment in the uniaxial nematic phase
of the thermotropic liquid crystal octylcyanobiphenyl
(8CB). The results of the experiment, which was
designed to probe biaxial fluctuations in a material that
does not possess a biaxial nematic phase, are equivocal.
Although the data exhibit a rapid relaxation independent
of wave vector, which is characteristic of biaxial fluctua-
tions well above T,,, both the relaxation time and the
amplitude of the relaxation are larger than expected from
a Landau—de Gennes analysis. Other possible sources of
the rapid relaxation are also examined, most notably
higher-order director fluctuations.
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The light scattering geometry, to be discussed below,
requires homeotropic orientation of the director. To fa-
cilitate this alignment, two microscope slides were dipped
into a 0.5% (by weight) mixture of hexadecyltrimeth-
ylammonium bromide in enthanol and allowed to dry.
The residue was removed with a Kimwipe and the two
slides were cemented together, separated by spacers of
nominal thickness 25 um. The cell was filled in the iso-
tropic phase by capillary action with 8CB, which was ob-
tained from E. Merck and used as received. The cell was
then placed into an oven, which was temperature con-
trolled to 10 mK, and cooled into the nematic phase. Ex-
cellent, defect-free homeotropic alignment was observed
by means of polarized optical microscopy. Finally, the
oven-cell assembly was mounted in our quasielastic light
scattering apparatus, which is described in detail else-
where [18].

The light scattering geometry is shown in Fig. 1, where
the uniaxial director 7 was oriented along the £ axis and
the plane of the cell was situated in the Xy plane of the
laboratory. Light from a 1-W Ar-ion laser was incident
at an (internal) angle 6, in the 9% scattering plane with or-
dinary polarization directed along the X axis. The depo-
larized scattering signal was detected at an (internal) an-
gle 6, such that the scattering wave vector § =Ky —K;
was completely along the J axis, as shown in Fig. 1. This
configuration, which corresponds to a “VH” depolarized
scattering geometry in which g, =0, probes several col-
lective modes associated with the traceless, Hsymmetric,
second-rank nematic order parameter tensor Q, viz.

FIG. 1. Light scattering geometry. The nematic director
lies along the 2 axis. K; and K, correspond to incident (ordi-
nary polarization) and scattered (extraordinary polarization)
wave vectors of light and ¢ the scattering wave vector. 6; and
6, are the internal incident and scattering angles for the wave
vectors and n, and n, the effective extraordinary and ordinary
refractive indices.
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where Q,, and Q,, correspond to biaxial terms, Q is the
scalar magnitude of the order parameter, and n; (i =x,y)
corresponds to deviations 67 of the nematic direction
from the 2-axis. One mode probed by our experiment in-
volves twist distortions for which the director fluctuation
8f=n, and §=¢q,9. The other component of the signal
involves fluctuations of the off-diagonal elements of Q,
again for which the wave vector §=g,9. This off-
diagonal component involves two collective modes, viz., a
biaxial mode (Qy,) and a mode involving higher-order
director fluctuations (Qn,n,). In a temporal intensity-
intensity light scattering autocorrelation measurement all
three modes are expected to appear and may be experi-
mentally separated if they have very different relaxation
times. To facilitate such a measurement, a portion of the
incident beam was added to the scattered signal just be-
fore the detector. In this way a clean heterodyne mea-
surement was made. When we account for polarization
selection rulers, the total observed correlation function
G"bs(qy,r) was simply the sum of terms proportional to
the observed off-diagonal correlation function

GP(g,,7)=c0s’0,G,,(g,,T)
=00829f< Qxy(qy,T)Qxy( _qyyo) >

[where Q,,(§)=0n,,(§)+Q,,(§) and n,,(q) is the
Fourier transform of n,(F)n ) (7), viz.,
nxy(i)=ﬂ—lz?lnx(ﬁl )n,(§—g;)], the observed twist

mode correlation function
G,"bs(q,v')=sin29fG,(qy,T)
=Sil’120fQ2< nx(qy,T)nx( _qyyo) ) ’

and a 7-independent local oscillator term.

In order to determine the scattering wave vector ¢, re-
fractive index measurements of the liquid crystal 8CB
were made with an Abbe refractometer as a function of
temperature at optical wavelength A=5145 A; results are
shown in Fig. 2.

Time autocorrelation measurements were first per-
formed at a fixed temperature 7" =37.1°C (approximately
2.8°C below the nematic-isotropic phase transition tem-
perature Tn;=39.9°C) as a function of the wave vector
g,. The external angle of incidence 65 was varied be-
tween 5° and 32°, corresponding to g, between 2.2 X 10*
and 1.35X10° cm ™1, as calculated from the refractive in-
dex data in Fig. 2. Exploiting the multi-7 capabilities of
our digital autocorrelator, the first 32 channels and subse-
quent 64 channels were set for different acquisition times,

5 ~Qnanc—0Onyn,
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thereby allowing us to simultaneously observe decay pro-
cesses on widely different time scales. Data were collected
at each wave vector § =g, and were least-squares fitted
to the sum of two exponentials plus an offset. A typical
experimental run is shown in Fig. 3, where the time base
increases discontinuously at channel 33. To aid the
reader and avoid the apparent temporal discontinuity and
resulting cusp in G°bs(qy,1-), Fig. 4 displays the same data
plotted against the logarithm of time. In Fig. 5 we plot
the slow relaxation time 7, vs g, obtained from the dou-
ble exponential least-squares fit, which we associate with
twist elastic fluctuations. Additionally, Fig. 5 shows a
least-squares fit of 7, to the function 7, =% /K zzqyz, where
K,, is the twist elastic constant and 7% is an appropriate
viscosity coefficient. The fit clearly demonstrates that the
slow mode corresponds to twist elastic fluctuations. In
Fig. 6 we plot the fast relaxation time 74,y vs g,, which
we associate with off diagonal fluctuations in Q. In addi-
tion to relaxation times, we also have extracted the rela-
tive magnitudes of G*(g,,0) and G/™(g,,0). As
G/™(q,,0) = g, %, we plot in Fig. 7 the quantity

G*(q,,0)tan’0, G, (q,,0)

G™(g,,0) G,(q,,0)
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FIG. 2. Extraordinary (n,) and ordinary (n,) refractive in-
dices vs temperature at A=5145 A. Note that the temperature
scale for the Abbe refractometer is slightly different from the
scattering apparatus. When calculating g the refractive indices
are evaluated relative to the transition temperature Ty;.
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FIG. 3. Observed intensity-intensity correlation function
G°® obtained in the heterodyne mode. For this example,
T=37.46°C and ¢q,=1.07X10° cm™". First 32 channels corre-
spond to 1 us/channel and the remaining channels correspond
to 16 us/channel. 74,,=5.7+1.5 us and 7, = 175120 us.

at a fixed temperature 7=37.1°C and in Fig. 8 we plot
Gf},’s(qy,O)tanZGf _ G,,(q,,0)
q7G™(q,,0)  ¢2G,(q,,0)

RZE

The quantity R, is expected to be independent of g, if
G,,(q,,0) is largely due to wave-vector-independent biax-
ial fluctuations. The fact that R, exhibits a significant g,
dependence is perhaps the first indication that G,?},’s( g,,0)
may have origins other than biaxiality. If, on the other
hand, G,;(q,,0) is dominated by the higher-order direc-
tor fluctuation term, then R« 49, (see below), which
again does not seem to describe the data. We shall return
to this later.

GS(qy1) (au)
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FIG. 4. Same as Fig. 4, except the time axis is continuous
and logarithmic.
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FIG. 5. 7, vs g, at 37.1°C. The solid line represents a fit of
the data to the function 7, =7/Kg?.

In addition to the wave-vector-dependent measure-
ments, G°bs(qy,7') was measured as a function of tempera-
ture at a fixed external angle of incidence 65**=25°. For
each temperature in the nematic phase the relevant
scattering angle and wave vector g, were calculated from
the refractive index data in Fig. 2, such that
g,=1.07X10° cm™' near  Ty;~39.9° and
g,=1.085X 10° cm ™! near the nematic—smectic- 4 phase
transition temperature T, ~3.7°C. Figure 9 shows 7,
vs temperature. Although there appears to be a very
weak trend of increasing relaxation time with tempera-
ture on approaching T;, the error bars are quite large
and do not facilitate a simple interpretation of the tem-
perature dependence of either K,, or 7. Figure 10 shows
Tast v T. Again, 7, <<7, and 74 is apparently in-
dependent of temperature.

As an additional check of possible biaxiality, we also
performed light scattering measurements in the smectic-
A phase. Although the amplitudes of the bend, twist,
and splay fluctuations do not vanish in the smectic- A4
phase, they are significantly reduced. This is because
they must couple to layer compression and director tilt

0 | 1 1 1 | 1
0 0.2 0.4 0.6 0.8 1 12

wave vector qy (cm-1)

1.4x10%

FIG. 6. ¢, vs g, at 37.1°C.
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FIG. 7. The quantity R, =Gg*(g,,0)tan’0,/G/*(q,,0) vs g,
at T=37.1°C. Note that we have not shown the data points for
the two smallest wave vectors because of excessive uncertainty

in the fitted amplitudes.

with respect to the layer normal, both of which tend to be
very rigid [19]. In consequence, G,(q,,) should become
quite small in the smectic- 4 phase. On the other hand,
one does not expect a large change in either amplitude or
relaxation time of biaxial fluctuations. A correlation
measurement was therefore made in the smectic- 4 phase
at Ty, —T ~3°C. The signal was found to be consider-
ably nosier than in the nematic phase and a data collec-
tion time of 4 h was required to ascertain the existence of
a rapid decay. The amplitude G,?}',’S(qy,O) of the observed
fast decay was reduced to approximately 40% of its value
in the nematic phase, in addition to its considerably
larger noise. Likewise, the relaxation time was approxi-
mately 372 us, faster than in the nematic phase. Addi-
tionally we note that the slow twist decay disappeared
completely into the noise. In the smectic-4 phase the
amplitude of the mode involving a combination of twist
and tilt with respect to the layer normal is expected to be
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FIG. 8. The quantity R, =G*(g,,0)tan’0;/q>G*(q,,0) vs
g, at T=37.1°C.
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FIG. 9. 7, vs temperature at a fixed external angle of in-
cidence of 25°.

quite small, as is its relaxation time 7,. If 7, were to be-
come sufficiently small so that it is comparable to T,
the amplitude of this mode would need to be reduced by a
factor of order 30. In consequence, it would be much
smaller in amplitude than the fast mode (cf. Fig. 3 for the
nematic phase) and the observed fast mode would corre-
spond largely to biaxial fluctuations.

In an attempt to understand these results we have first
considered fluctuations that would be expected if we as-
sume that 8CB can be described by a simple Landau—de
Gennes theory in terms of a single tensor order parame-
ter, e.g., the expectation value of the long axis of 8CB.
This seems reasonable given the rather simple structure
of the molecule. Although 8CB does not have a
uniaxial-biaxial phase transition, it is plausible that the
biaxial fluctuations may play an important role in the
scattered signal. Consider the order parameter tensor
Q(F)in Eq. (1). The Landau free energy includes both
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FIG. 10. 7, vs temperature at a fixed external angle of in-
cidence of 25°.
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bulk and elastic terms, viz., F =Fy  +F .., Where

Foun= [ d7[ AQ 1505, +BQp0p, @yt C(Q5Qp, ]

(2)
(repeated indices are assumed) and
Felastic = f d?% { EvanﬁvanB +L VaQ :zBVyQ ;/B
+LQ(V,ngVon,)Qp,} , (3)

where the first two terms account for the elastic energy
associated with director fluctuations and biaxial fluctua-
tions (in the one elastic constant approximation K ~LQ?)
and the last term describes the coupling between the two
types of fluctuations. It is known that the cholesteric
phase enhances the biaxiality [20-22]; although small, it
has been measured experimentally [23]. Theoretically it
has been shown that the biaxial fluctuations induced by
the twist in a cholesteric are reasonably well described by
using the twist-biaxial coupling term as a source and us-
ing the susceptibility for biaxial fluctuations derived from
this free energy. We therefore intend to keep the last
term in the free energy to include possible twist or bend
fluctuation-induced biaxial fluctuations.

For convenience, we express f(7) and Q'(¥) in terms of
their Fourier transforms. Substituting the Fourier
transformed order parameter [Eq. (1)] into Egs. (2) and
(3), the total free energy can be written as
F=F,+F, o +F2,,+Fcoupl, where F, 5 and F2,, are
the free energies of second order in Q’( q) [i.e., 0y, () or
0,,(g)] and 7,(¢g), and F,, includes the couphng
terms:

=Q(24Q%+2BQ*+4CQY), )
FZ,Q,=2Q—1§{(A~BQ+;CQ2+%Lq2)
q

X[Qu (@I +105, @1, (5
K 3 ¢%[n,(@)*+In, (G

—
q

W2, (6)

G°*(g,,7)=c0s?0 {10y, (g, )0y,
=cosZOf[Gb(qy,T)+Gh(qy,r)]+sin29fG,(qy,~r)
=c0326foy(qy,T)+sin29fG,(qy,7') ,

where n,,,(g) is the Fourier transform of n, (¥)n,(¥)

Ry ( _IEn g)n,(G—q,) . (14)

We have also defined the labels G, G, and G, to be the
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F

LQ —
coupl=_ 202 2 q n (ql)n (q ql)Qxy q)+ )

q:ql
(7

where we have used the one elastic constant approxima-
tion and. () is the bulk volume. More complicated expres-
sions for the elastic energy do not alter the following dis-
cussion in any significant way. Finally, note that these
equations apply to the general wave vector g; later we
shall examine our result for g =g,.

From Eq. (4 we find that at equilibrium
A(T)=—BQ(T)/2—4C[Q(T)]*/3. Within the Gauss-
ian approximation, and by using Eq. (5) and the partition
theorem, it is straightforward to obtain

' 2) — r=2y2y — . 8
U (@2 )o=A(1Q5, (@)D —3BQ(T)+Lgq? ®

Note that the scalar order parameter Q is temperature
dependent. In the above equation ( ), represents the
thermal average within the Gaussian approximation and
kg is Boltzmann’s constant. The relaxation of the biaxial
mode can be described by

(Q'(d,71Q'(—4,0))o=(|Q"(@)|*)exp(—T7/7,) , )
where the relaxation time 7, is
7y ="y /[ —3BQ(T)+Lg?] (10

and 7, is the viscosity associated with the biaxial fluctua-
tion mode. Also, using Eq. (6), we find for the twist fluc-
tuations

Qk,T
(n @)y e= E”

q2

(11)

and

(n(G,m)n(g,0))o=(|n;(g)1*exp(—Kq*r/7), (12)

where i corresponds to either x or y. For g= qy,
=7/Kq>.
For the depolarized light scattering geometry shown in
Fig. 1 the observed correlation function is given by

—4,,0)1) +Q%0s’0,(|n,,(g,,7)n,(—q,,0)| ) +Q%in’0 |n, (q,,7)n,(—q,,0)])

(13)

[

correlation functions due to biaxial fluctuations, higher-
order director fluctuations, and twist fluctuations, respec-
tively.

The higher-order director fluctuation term [n,(y(?j)l2
comes from combined bend, twist, and splay effects. Us-
ing Egs. (11) and (12), after some algebra we find
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23 (n @)X n, (G —4,)I*)
7
_ QkpT?
8K%q

(]nxy(§)|2>o=ﬂ_
(15)

and

(ny(q,7)n,,(—4,0)),

Qk3T?
_(2_)—21(—2'[ d'rg('r Yexp(—7/7') , (16)
T
where
2.0 /= T2t =
g(r)—— VKt /q+V2_Ke'r /7 17

VEq*r /i—V2—Kq*' /7

Notice that the integral I= f o 'dr'g(r)exp(—7/7') is
dimensionless. To account for the coupling term that ap-
pears in Eq. (7) of the free energy, we need to go beyond
the Gaussian approximation. The standard Dyson equa-
tion can be written as

UQu @) T '=(Q, @) '—2(q) , (18)
where, using Egs. (7), (14), and (15),
—17202.3
2@«%‘1— : (19

To compare our model with the experimental
results for 8CB, we set the parameters A4 =6.3
X10(T —T*),B=—1.08X10", and C=6.8%X10°
ergscm ™ > where T* is the supercooling limit of the iso-
tropic phase, and K =2.1X 1077 dyn [24]. Using these
parameters and considering a scattered wave with a wave
number in the range 10° cm ™!, it is easy to see that |B| is
about 5000 times larger than Kq2. Using Eq. (10) and the
relationship 7, =7%/Kgq? and assuming the viscosities 7,
and 7 are about the same, we would expect 7, /7, to be of
order 5000. Additionally, Egs. (8) and (11) suggest that
the magnitude of the twist fluctuations is about 5000
times larger than that of the biaxial fluctuations. Howev-
er, the observed ratio of 7, /7 is only about 30 at this
wave vector and the magnitude ratio (corrected for polar-
ization rules) is about the same. As both of the observed
ratios are considerably smaller than the model calcula-
tions, this analysis would seem to exclude the possibility
that the fast mode observed in the experiment is from bi-
axial fluctuations. Also, using the same parameters, we
can see that the contribution of the biaxial fluctuation in-
duced by the twist or bend fluctuation {|Q,,(¢ )12)0=(q)
is of order 1078 This confirms that the biaxial fluctua-
tions are not greatly enhanced over our predictions in the
nematic phase. In other words, twist or bend
fluctuation-induced biaxial fluctuations are negligible.

With the same material parameters and using Eqgs. (11)
and (15), we see that at g, =10° cm ™' the amplitude ratio
G, /G, is expected to be about 300, still much larger than
the value obtained in the experiment. The correlation
function G,(¢,7) due to higher-order director fluctua-
tions cannot be fitted with a single exponential relaxation.
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The Laplace form of the correlation function G,(q,7)
[Eq. (16)] suggests, however, that this mode contributes
significantly at short times 7. In Fig. 11 we plot the in-
tegral I = fo 'dr'g (7" )exp(—7/7'). Although there is a
slow component to the decay, its amplitude is small and
does not add appreciably to G,. Nevertheless, we point
out that the initial decay is quite rapid and thus G, may
contribute to the measured fast relaxation, although it is
unlikely to contribute sufficiently to account for the large,
observed fast amplitude. It should also be noted that G,
may couple to other fast relaxations, although this cou-
pling is likely to be small and would not appreciably
change the results.

There are, of course, other potential order parameters
in 8CB and the conclusion of the above analysis is that
there must be such a mode with a relatively large suscep-
tibility in order for the data reported herein to be ex-
plained. The smectic order parameter has a relaxation
time that varies rapidly with temperature over the range
of this experiment. As the observed fast relaxation time
apparently does not vary rapidly with temperature (cf.
Fig. 6), smectic fluctuations are not likely to account for
the observed behavior. Nevertheless, other relaxations
may exist, which may result in light scattering through a
coupling to director fluctuations. A fluctuating tensor in
the medium, which may arise, e.g., from significant corre-
lations between pairs of cyanobiphenyl molecules
[25-27], may be responsible for the observed behavior.
The pair tends to have a rather biaxial shape and, poten-
tially, the alignment of such pairs and a bond orientation-
al order may result in unusually large biaxial fluctuations.
This is consistent with the large fast decay that we have
observed experimentally. Recent theoretical work by
Ferrarini et al. [17] has indicated that in cyanobiphenyl
dimers the conformational equilibrium can give rise to a
large molecular biaxiality, yet not large enough to form a
biaxial phase. Alternatively, one may also imagine
confirmational fluctuations in the 8CB, such that some of
the conformations may have significant biaxial character.
Clearly, more work is needed to fully understand the ob-

Integral 1

0 1 !
0 1 2 3 4

Time t (multiples of ttwist)

5 X Ttwist

FIG. 11. The integral I= f(z)fdr’g('r’)exp( —7/7') vs time T,

in units of the twist relaxation time 7, =% /Kq>.
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served behavior.

In this paper we have reported on a light scattering ex-
periment in the nematic phase in which we observed rap-
id relaxations in addition to the slower twist relaxation.
A Landau-de Gennes model, which includes biaxial and
higher-order director fluctuations, was developed in an
attempt to explain the results. It was found that these
fluctuations are unable to qualitatively account for the
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observed behavior. Other possible sources of the scat-
tered signal were suggested.
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